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A special non-crossing rule for the potential curves of one-electron diatomic molecules is proved and
then used to correlate united atom and separated atom states. A new technique for finding the asymp-
totic expansion of the electronic energy W in inverse powers of the internuclear distance R is developed
and the expansion of W is found through O(1/R®), with the coeflicients expressed in terms of the nuclear
charges and separated atom quantum numbers. Exponentially small corrections to the asymptotic
expansion are evaluated and the g-u homonuclear and quasi-crossing heteronuclear energy splittings
are discussed.

INTRODUCTION

One-electron diatomic molecules (o.e.d.ms) are the simplest of all molecular systems; as such,
they constitute an important problem in quantum mechanics. Neglecting the nuclear motion, the
Schrodinger equation for a general o.e.d.m. with nuclear charges Z, and Zy, and internuclear
distance R is (in atomic units, m = ¢ = £ = 1)
(3V2 4 Zofra+ Zp[ro+ W) ¥(r; R) = 0, (1)
+ NRCC Publication no 13047,
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664 J.D.POWER

where W = W(R) = E(R) —Z,Zy|R is the electronic energy. The classical analogue of (1) is
separable in confocal spheroidal (elliptic) coordinates (Pauli 1922),

£ = (ra+m)/R, 7= (ra—m)/R, ¢ = azimuthal angle} )

1<f<w -1yt 0<¢<2n

where 7, and rp are the distances of the electron from nuclei ¢ and b, and hence (1) is also separ-
able in these coordinates (Burrau 1927).
We assume that
#(r; R) = X(€) Y(n) exp (£ imd), (3)
where m = 0, 1, 2, ... is the modulus of the magnetic quantum number, and obtain the well-
known ‘inner’ and ‘outer’ equations:

d dY 2
35 (1= T+ (C-pU =) (- R(Za=Z0) ) T = 0, )
d dX 2
C is the separation constant, and
p=R(~4W) (©)

(we only consider W < 0). Subject to the usual conditions that the wavefunctions be square
integrable, continuous, and have continuous first derivatives, simultaneous solutions of the
coupled system of Sturm-Liouville equations (4) and (5) exist for only a discrete (denumerably
infinite) set of pairs of eigenparameters p and C.

In the two limits R - 0 and R — oo, we can give simple closed formulae for the energies and
wavefunctions of o.e.d.ms. For R very large (or small), an asymptotic expansion of I in powers
of 1/R (or R) is known. However, in general, we must resort to numerical solutions of these
equations. Extensive tables of eigenparameters have been compiled by Bates, Ledsham & Stew-
art (1953), Wallis & Hulbert (1954), Peek (1965), Bates & Reid (1968) and Madsen & Peck
(1971) for Hy, by Bates & Carson (1956) for HeH?*, and by Ponomarev & Puzynina (1966,
1970) for Z, = 1to 8, Zp = 1.} '

In the first section of this paper, I prove a special o.e.d.m. non-crossing rule and use it to
correlate the united atom (u.a.) and separated atom (s.a.) states. Next, I show how the general
formula for the large R asymptotic expansion of W in powers of 1/R can be obtained by using only
simple algebraic operations which are readily adapted for computer evaluation, and extend the
expansion through O(1/R®). I conclude with a discussion of the exponentially small corrections
to the 1/R expansion, and of the quasi-crossings of potential curves.

UNITED ATOM LIMIT
As R -0,
Rf—~2r, 5 —>cosf, ¢ isunchanged, (7)
where (7, 0, ¢) are the usual spherical coordinates (I am using right-handed coordinate systems
on both centres, with the positive z-axis directed from a to 4). In terms of the u.a. charge

Z= Za,+Zb

1 I have recently developed a computer program, to be described in a subsequent paper, with which one can
quickly and inexpensively duplicate all of the results tabulated in these papers.
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FIXED NUCLEI TWO-CENTRE PROBLEM 665

and quantum numbers z = 1,2,...; /= 0,1,...,n—1;and m = 0, 1, ..., [, we have
Woim(0) = —Z?[20?, (8)
):pnlm(r; 0) = AnlmrlL?Llill—l(2zr/n) C€xp ( - Zr/n) le (COS 0) €xXp ( * 1m¢)3 (9)

where 4,,,, is the normalization constant, and I am adopting the definitions of Abramowitz &
Stegun (1964) for the associated Laguerre and Legendre polynomials. In view of (7),at R = 0
the inner equation must become the differential equation for associated Legendre polynomials,
and the outer equation the familiar radial equation for one-electron atoms. Equating eigenpara-
meters, we get

pIR—Z[2n, C—I[(+1). (10)

Ignoring normalization, as R — 0,
X(&) > (pE) Li41-1(2pE) exp (— 1), (11)
Y(y) > PP (). (12)

Following Hund (1928), the states of general o.e.d.ms are customarily labelled according to
their u.a. limit quantum numbers as #{l} {m}, where

{=s,p dfg,.. (skipj).. for [=0,1, 2,...,}
{m} =o0,7,8,¢,... for m=0,1,2,....

(13)

For homonuclear o.e.d.ms a subscript , or , describing the inversion symmetry is appended,
g for L even, , for [ odd.

SEPARATED ATOM LIMIT

As R — oo, the elliptic coordinates § and 5 become parabolic coordinates,

£—>1+2,/R ~ 1+ Ap/R, } (19
§—> —1+pa/R ~ 1—pup[R,
where, in terms of (right-handed) spherical coordinates on each centre,
Ag =ra(1—cosby), Ap=rp(1 +c050b),} (15)
Ma = 1a(14+cosba), pp = rp(1—cosbp).

In terms of parabolic coordinates, an (unnormalized) atomic eigenfunction on centre a is of the
form (Morse & Stueckelberg 1929)

er'éa(gaﬂa) L%&—K&—-m—-l(ga/ Aa) (frada)i™exp (—$Ca(pty + Aa) +ime), (16)
where Ny = K, +m+1, K, +m+2, ... is the s.a. total quantum number, Ky = 0,1, ..., is the
parabolic quantum number, and {, = Za/Na. The s.a. energy is

Wy, x,m(0) = =38 = —$Z3[ V2. (17)

For a o.e.d.m. state for which the electron is localized on centre a as R — o0, we thus expect
that

PR, m,m(ts R) = ((E—1) (1+9))imexp (+imd)
X L (GaR(1+ ) LY —x,-m—s (EaR(E— 1)) exp (- 3L R(E+7))  (18)

will be a good approximation to ¥ for R large, becoming exact for R infinite. When no confusion
can arise, we will drop the subscript , from the parameters. We have analogous expressions for
centre b, with , replaced by , in (16) to (18) and 4 by — 9 in (18).

55-2
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666 J.D. POWER

In the homonuclear case, we cannot distinguish between P4 «,,, and ¥} .., and therefore must
express the o.e.d.m. wavefunction as a lincar combination of these two atomic functions (Morse &
Stueckelberg),

¥ = ![Ila\}lfm + qlk’Km (19)
= exp (£ im@) Ly g1 (§R(E - 1)) (§— 1)t exp (- 3LRE)
x {(L+n)bmLig (CR(1+7)) exp (—$ER) & (1 —y)¥m L (CR(1—7)) exp (3¢Ry)}. (20)
Ya and PP have equal weights in (19) by symmetry.
In the heteronuclear case, if
Za/Na = Zb/Nbp (21)
then Y} i, and ¥} x, ,, are degencrate at R = oo. If we choose Ky and Ky so that

Noy—Ky—m—1=Ny—Kp—m—1, (22)

these two functions will have the same X(§), and any arbitrary linear combination of them is of
the required product form, (3). Do we need to allow for generalizations of the homonuclear form,
(19), in cases such as this? Consider the one-centre s.a. state (18) perturbed by a point charge of
magnitude Zy at a large distance R along the z-axis. Neglecting terms that die off exponentially
in R, a simple perturbation calculation of the energy through first-order gives

W(R) = —Z2|2N? — Zy|R+ O(1/R?). (23)
For R large but finite, the energies of the two states under consideration differ by
(Za—Zp)|R+ O(1/R2).

They are degenerate only when R is infinite. However, with R infinite, all matrix elements be-
tween ¥ and PP are zero, and they do not interact. We thus conclude that as R — oo, the wave-
function for a heteronuclear o.e.d.m. will assume the one-centre form of either ¥ or ¥b.

QUANTUM NUMBERS AND NODES

A real function f(x), with range a < x < f, is said to have a node at x = y if f(y) = 0,
Sf'(y) = df]dx|,, + 0, and 7 is not equal to a or #. Note that having f’(y) # 0 guarantees that

Jf(x) will change sign as x passes through vy, and rules out cases such as f(x) = 0 or f(x) = (x—7)?
being classified as nodes. We shall always choose X(§) and Y () to be real functions. Instead of
the complex exp ( +img) we can use the lincarly independent real functions cos m¢ and sin me
in discussing nodes for ¢.

Let the number of nodes in each coordinate be specified by the nodal quantum numbers
ng, ny, and n,. Since L¥(x), PFi(x), and cos jx or sin jx each have j nodes in their appropriate
range of x (we count the cyclic pairs, such as cos 4= and cos §r, as only one node), we can estab-
lish a correspondence between the u.a. and s.a. quantum numbers and the nodal quantum num-
bers. Using (11) and (12), we have for the united atom

ng=n—Il-1, n,=1l-m, ny=m. (24)
For the separated atom limit of a homonuclear o.c.d.m., the term in (20) with factor exp ( —${R7)
contributes K nodes in Y(y) for 9 < 0, the other term K nodes for 7 > 0, and we get one more
node, at = 0, if the minus sign is used. Thus,

. 2K
ng=N—-K-m—1, ng=m, n,= elther{

2K+ 1}' (25)
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FIXED NUCLEI TWO-CENTRE PROBLEM 667

For the s.a. states of a heteronuclear o.e.d.m. which dissociates with the electron localized on
centre a, we have from (18)

n£=Na,“Ka,‘—m"‘1, n,,]=Ka,, n¢=m. (26)

The outer equation, (5), is invariant to interchanging the nuclei, but, when Z, + Z,, the inner
equation is not invariant to this interchange. Any asymmetry in the charge distribution along
the molecular axis when Z, # Zy must be given by Y(#). When R is large and the electron dis-
sociates on centre &, the average value of Y (%) for  near + 1 will be much smaller than that for
y near — 1. The assignment 7, = K, in (26) ignores any nodes in ¥(7) near centre b; if there are
nodesin Y (%) for y near + 1 with R large but finite, then (26) will be correct only when Ris infinite.
Nevertheless, for a s.a. state on centre a, this is the correct value of 7, to use in the forthcoming
expansion of I in powers of 1/R.

DIssOCIATION PRODUCTS: ARE NODES GONSERVED?

It is very useful to establish a one-to-one correspondence between the u.a. and s.a. states of a
general o.e.d.m. One can draw many useful qualitative conclusions from this correlation, such
as the general form and required crossings of the potential curves.

Given this problem, quite likely ones first inclination would be to try to use the von Neumann-—
Wigner non-crossing rulet (which states that potential curves of states of the same symmetries
cannot cross as R varies), to build-up a correlation table. However, if one uses only geometrical
symmetries as we have done in classifying the various states, then this usual non-crossing rule
does not hold for o.e.d.ms (Gershtein & Krivchenkov 1961; Moiseiwitsch 1961). This pecularity
has been explained by Alliluev & Matveenko (1966) and Coulson & Joseph (1967), who showed
that there is an additional constant of motion in the two-centre Coulomb problem. When
potential curves for states of the same geometrical symmetries cross (for example, the 2so, and
3do, states of Hy ), their values of the quantum number corresponding to the additional constant
of motion differ.

Both the inner and outer equation are of the form

S Py Qi =0 (27)
The transformation
Y(x) = D(t(x)) [J{P(x) ' (%)} (28)

(Gershtein, Ponomarcv & Puzynina 1965), where @ and ¢ are for the moment arbitrary func-
tions and a prime on a function will denote differentiation with respect to #, results in the ‘normal’
form of ordinary second-order differential equation for @, with no first derivatives,

2@ (Q(x) —§P"(x)  ¢"(x) | 3(¢"(x))® ( P'(x) )2) -

&+ (P rmr e T Fm ) )P o e
We remove the arbitrariness in @ and ¢ by specifying one or the other. The most common choice
is to simply use t(x) = x, and then @ satisfies

o (LA (B Yory - o 0

+ For a rigorous derivation of the von Neumann-Wigner non-crossing rule and a discussion of the shortcomings
of carlier proofs, see Razi-Naqvi & Byers-Brown (1972).
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668 J.D.POWER

In their quasi-classical J.W.K.B. treatment of the outer equation, Bates & Reid (1968) took
t(x) = In(x—1). Gershtein ef al. (1965) carried out a quasi-classical treatment of both the inner
and outer equations with

o) = + f dx/P(x), (31)
which gives
d2@[ds + P(x) Q(x) D(¢(x)) = 0. (32)
On the other hand, if (¢) satisfies an equation of the form
d2M[de? + G(¢) M(t) = 0, (33)

then choosing @ = M gives an equation for #(x). This is the approach followed by Komarov &
Slavyanov (1967, 1968) in their work on large R asymptotic expansions.

There are several well-known properties of the bound state solutions of the Schrédinger equa-
tion for one-dimensional motion,

A2y /dx? + (e— U(x)) Yr(x) = 0 (34)
(Landau & Lifshitz 1965; Condon & Morse 1929). None of the energy levels of the discrete spectrum are

degenerate. If we label the eigenvalues in ascending order, then the ‘oscillation theorem’ requires that
the n-th eigenfunction has n— 1 nodes. For the inner equation, (30) gives

d2o y  C—R(Zo—Zn)7 1—m2) ~
Tt (- s o) = o, (35)

in which — p? assumes the role of the energy € in (34). Holding the nodal quantum numbers and
nuclear charges fixed and allowing R to vary in (35), we see that as a consequence of these two
theorems the number of nodes in Y (%) cannot change as R varies for all finite R. Similarly, nodes
in X(£) are conserved; the factor exp ( + im¢) is independent of R, so n, is trivially conserved.

Morse & Stueckelberg (1929) used conservation of nodes to correlate u.a. and s.a. states of
homonuclear o.e.d.ms. Gershtein & Krivchenkov (1961) extended the results to heteronuclear
o.e.d.ms. I have discovered an alternative, in some respects more fundamental, derivation of
these results. To bring out the essential differences, I shall first briefly recapitulate this previous
work.

Morse & Stueckelberg equated the u.a. and s.a. values for 7, and n, as given by (24) and (25),
getting

n—l—1=N-K-m—1,
|

. 2K
l—m = elther{ﬂ(,_*_1
Solving for N and K in terms of nl/m,

K=[}(l-m)]), N=n—Il+m+K, (37)

where [x] is the integer part of x.

The heteronuclear case is more difficult because nodes are not necessarily conserved when R
becomes infinite, so we cannot simply equate n; and 7, in (24) and (26) to get the correct correla-
tion rules. This loss of nodes has been noted but ignored by previous workers. Gershtein &
Krivchenkov only considered the possibility that nodes could vanish if two or more coalesced to
form a multiple root. If Y(%) had a multiple root at 9 = v for R finite then Y(y) = d¥/dy|,—, = 0,
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FIXED NUCLEI TWO-CENTRE PROBLEM 669

and from (4) and derivatives of (4), d*Y[dy¥|,_, = Ofor £ = 2, 3, 4, .... A Taylor series expansion
about 5 = vy then gives Y(5) = 0 for all %, so a multiple root is forbidden, at least for R finite.
Nodes need not coalesce in order to disappear. If Y(3) — 0 for all y > 0 as R — o, then any nodes
in 0 < 5 < 1 for R large and finite will vanish when R is infinite.

There is a heuristic physical explanation for these disappearing nodes. Since the discrete
eigenvalues of our one-dimensional differential equations are non-degenerate, the eigenfunctions
must be orthogonal. Labelled according to increasing eigenvalues, the nth eigenfunction of a
particular geometrical symmetry must have at least n — 1 nodes for R finite in order to be ortho-
gonal to the n — 1 functions of the same symmetry with lower energies. When R is infinite, func-
tions on centre @ are automatically orthogonal to functions on centre b, and do not require nodes
to be mutually orthogonal. Superfluous nodes vanish. For example, the 1so ground state of HeH2"
dissociates into H* plus He™" in its ground state, and the 2po state dissociates into He2" plus H
in its ground state. For R large and finite, the 2po state has a node in Y (%) near the He nucleus
so that the two wavefunctions can be orthogonal; when R becomes infinite, this node vanishes.
In the homonuclear case, with two-centre functions of the form (19), nodes in Y (%) must be con-
served in order to maintain orthogonality.

Gershtein & Krivchenkov (1961) considered R large and finite, so that nodes are conserved,
and solved for the dominant terms near each centre in an asymptotic expansion of Y(#). For the
case where the o.e.d.m. dissociates with the electron on centre @ and (21) is not satisfied by any

allowable value of M, the wavefunction near 7 = — 1 is essentially of the form in (18), with K,
nodes. For 7 near + 1, they found
Y(n) = (1—n)i M(—Ka+ No(Za— Zv)[Za, m+ 1, {aR(1 — 7)) exp (CaRy), (38)

where M(a, 8, x) is the confluent hypergeometric function,

2
M(a, fyx) = 1+°—‘/§+"2—‘-§%(iﬁ2—%+... (39)
(Abramowitz & Stegun 1964). The number of nodes in ¥ (%) near y = + 1 depends upon the value
of — Ka+ Na(Za— Zy)[Za; adding this contribution to K, gives the total which must be equal to
n, from the u.a. Nodes in X(£) are conserved even for R infinite, so we equate 7, in (24) and (26)
and have the desired u.a.—s.a. correlation. The centre & case is similar. When (21) holds,
Gershtein & Krivchenkov expressed the wavefunction as a linear combination of ¥2 and ¥»
and the analysis is more complicated.
Both of these derivations required knowledge of the dominant terms in the wavefunctions at
R = 0 and R large, and then simply counted up the nodes. In both, there is the unstated assump-
tion that higher order corrections to the dominant term for R large would only move the positions
of the nodes and not change their number. While reasonable, this assumption is difficult to prove;
its lack of proof leaves these results incomplete. I have discovered an alternative derivation of the
correlations which avoids this difficulty; we do not require detailed knowledge about the form of
the wavefunction, but only that it is separable as in (3). I shall continue to use the u.a. and s.a.
quantum numbers in order to compare my results with the previous work; this assumes only that
we know (24) and (26) relating them to the nodal quantum numbers.
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670 J.D. POWER

U.A.—S.A. CORRELATION FROM THE O.E.D.M. NON-CROSSING RULE

We can easily prove the following o.e.d.m. non-crossing rule, which is a consequence of the
separability of the wavefunction in elliptic coordinates. Let Z, and Zy be fixed and, for finite
R, let states 1and 2 be characterized by their nodal quantum numbers 7, n,, n; and ng, n, and
ng. In order for the potential curves of these to states to cross, at least two of the three nodal quantum numbers
must be different.

For instance, consider ; = g, ng = n;, but z, % n,, and assume that the potential curves cross
at R = R,. The energies are equal at R, so the value of p is the same for both states at the point
of crossing. Since X(£) has the same number of nodes for both states, we must have exactly the
same function X for both at R, because there are no degenerate eigenvalues of the outer equation
having the same geometrical symmetry. The separation constant C' must be the same for both
states at Ry, and hence both have the same potential in the inner equation. Butz, # n, then contra-
dicts the non-degeneracy of the eigenvalues of (35), so such a crossing is forbidden.

On the other hand, if both 7, + n; and n, =+ n,, we have two distinct values C and C’ for the
separation constants. With different potentials in (35) for the two states, the theorem about non-
degeneracy of eigenvalues does not apply, and crossing can occur.

A simple example will best illustrate how we can now use this o.e.d.m. non-crossing rule to
build-up correlations between u.a. and s.a. states. Consider the o states of HeH2" with no nodes
in X(§), ng = ng = 0,1, = 0,1,2,...,i.e. 150, 2pc, 3do, .... Starting with n, = 0, we require that
cach state dissociates into the lowest available s.a. state consistent with conservation of n; and
n4 and also with the o.e.d.m. non-crossing rule. The ground state thus dissociates into

H* +He* (100) (N = 1,K = m = 0).

The 2po state presents a momentary dilemma, because both H(100) + He?* and H* + He™(210)
have W (o) = — 0.5 a.u. However, by using (23), for R large and finite the first state goes as
W(R) = —0.5—2/R+ ..., the second as —0.5—1/R+.... Since these curves cannot cross (their
equality at R = o0 is not a crossing), the 2po state must dissociate into the s.a. state with lower
energy at finite R, H (100) +He?". The next state, 3do, then becomes H* + He™ (210). One sces
that in those cases where Zy/Ny = Zy/Ny with Zy > Zy, the state with the electron on centre 5
is always lower in energy for finite R, and is filled first when we build-up the correlation table.

By formalizing this ‘counting’ of the states, we easily find analytical expressions relating the
u.a. and s.a. quantum numbers. Assume that Z, > Zp, and let the u.a. quantum numbers nim
be given, so that n, n,, and n; are given by (24). Restricting n; and 7, to these particular values, we
simplify notation by labelling the s.a. states on « and b only by their parabolic quantum numbers,
K, and Ky, The s.a. total quantum numbers are

No=ng+Kat+m+1, Np=n+Kp+m+1, (40)
and thes.a. energies are
Wi (0) = —Z82N:, W, (0) = —Z}[2N}. (41)

There are [ —m — 1 states with lower energies and the same number of nodes n, and n4, and we
now considerz, = 0, 1, ...,/ —m. The first state, n, = 0, dissociates onto centre a with K, = 0, and
states continue to go onto centre « until we reach the first value of K, for which

Zp[(ng+m~+1) > Zaf(ng+ Ka+m+1), (42)
at which point we get a state with K = 0 on centre 4. In general, we must have both

Zy|(ng+Kp+m+1) > Za|(ng+ Ka+m+1) (43)
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FIXED NUCLEI TWO-CENTRE PROBLEM 671

and Zb/(ﬂg + Ky +m+ 1) < Za,/(ng‘l‘Ka,'l‘m) (44)

in order that the (Ka+ Kp+ 1)tk state should be on centre b. Since we are interested in the

({ —m+ 1)th state, we set
Ka+Kb = l—'m. (4:5)
Solving (43) for Ky, we find

Ky =[(Zv(n+1)=Za(n—1l4+m—1))[(Za+Zp)] -1, (46)

where again [x] is the integer part of x.

If (46) gives Ky < 0, this simply means that we do not get a single state on centre 4 in the s.a.
limit from the first / — m + 1 u.a. states. Suppose then that Ky, from (46) is > 0. We can tell whether
the appropriate s.a. centre is @ or b by testing the (/—m)th state, as in (44). The electron will be

on centre a if
(Zon—Zo(n—1+m—1))[(Za+Zv) > 1+ K, (47)

and then a={—m—Kp. (48)

In either case, the total quantum number is given by (40).

This establishes the desired one-to-one correlation between u.a. and s.a. states of hetero-
nuclear o.e.d.ms. Although we worked under the assumption that Z, > Zy, the same type of
procedure works when Z, = Zy. Simply setting Z, = Zy, in (46) gives K = [4(/—m)], in agree-
ment with (37). Itis also useful to have formulae expressing the u.a. quantum numbers in terms
of Za, Zy and the s.a. quantum numbers. Inverting these results, we find (still assuming that
Za, > Zb)

= {Kb +NvyZy|Zy if NyZa|Zy = integer,
s.a. on centre b Ky +1+[Ny Za|Zy] otherwise, (49)
l=n+m+Kp— M,

n =N .
{l _ K:+ m} if Ka < Na(Za—2Zb)[2Zs,
s.a. on centre a (50)

l=Ko+m+1+[Ka— Na(Za—Zv)|Zs) .
{n =I+N,—Ka—m otherwise.

These latter results are equivalent to the correlation rules found by Gershtein & Krivchenkov.}

Several authors have previously noted that the heteronuclear o.e.d.m. results of Gershtein &
Krivchenkov are consistent with the non-degeneracy of eigenvalues and oscillation theorem
for the one-dimensional equations. Komarov & Slavyanov (1968) have in fact stated the o.e.d.m.
non-crossing rule, but seem to treat it as a consequence of the Gershtein & Krivchenkov results
rather than as the fundamental assertion which it rightfully is.

AsYMPTOTIC EXPANSION OF W(R)

Expansions of W(R) as a power series in R for R small and 1/R for R large can be quite useful.
In their ranges of validity, they dispense with the need for huge tables of numerically obtained
energies. The large R expansion will also enable us to give a detailed treatment and interpreta-
tion of quasi-crossings of potential curves.

+ There is a typographical error in equation (41) of the English translation of their paper; the > and < should
be interchanged.

56 Vol. 274. A.
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672 J.D. POWER

Using united atom short-range perturbation theory (Byers-Brown 1968; Byers-Brown &
Power 1970), Byers-Brown, Chang, and Power have obtained analytical expressions in terms of
the nuclear charges and u.a. numbers for the coefficients through I} in the expansion

W(R) = W+ R*W, + RW, + RW, + ... (51)

The details of this work will be published elsewhere. Byers-Brown & Steiner (1966) showed that
the next term in (51) is of order R5In R.

Several different approaches have been used to obtain the large R expansion of W/(R) in
powers of 1/R. Dalgarno & Lewis (1956) have shown that such an expansion must be asymptotic.
Dalgarno and co-workers (1955—7) and Robinson (1958) used perturbation theory, with the
term Zy[rp in (1) taken as the perturbation, and expanded the perturbation energies in powers
of 1/R. The complexity of the analysis has restricted these calculations to the four lowest states,
with Ny Kam = 100, 201, 200 and 210. Coulson & Gillam (1947) carried out a perturbation
calculation in which they found expansions of W(R) through O(1/R5) for arbitrary states of Hy .
However, they incorrectly used atomic wavefunctions in parabolic coordinates for their zero-
order wavefunctions, instead of in the proper elliptic coordinates (Coulson & Robinson 1958),
and their term of O(1/R5) is in error (Robinson 1958).

An alternative approach is to somehow obtain asymptotic expansions of C/p in powers of 1/p
directly from the inner and outer equations. Denoting these two expansions as C; and €}, equating
C’~§ and 5,, gives an equation involving only p, R, Z,, Zp and the nodal quantum numbers, which
we can solve for p/R as a power series in 1/R, and square to get W(R). The tremendous advantage
of this approach is that we can carry through the analysis using arbitrary nodal quantum num-
bers, and thus obtain a general formula, as opposed to the treatment of each state individually
in the perturbation calculations.

Komarov & Slavyanov (1967, 1968) used the modified comparison method (Slavyanov
1967) to obtain asymptotic expansions of X(§) and Y(7), and in turn from these the expansions
C’~§ and 5,7. They determined the expansion of W(R) through O(1/R*). Their method could be
extended to evaluate higher order terms, but doing so would require considerably more effort
than does the approach which I shall now present.

Assuming that R is large, we take the square root of (23) and find the approximation for a
s.a. state on centre a,

p = RZa/2N3+NaZb/2Z3,+.... (52)
In the following work, we shall assume that
R> 2Ny/Za, (53)

so that p will be large. We already know the limiting form ¥2for a s.a. state, and will now expand
X(£) and Y(7) in forms that can easily reduce to this limit as R — oo. We express X(£) as

X(E) = (&—1)mexp (—p(E—1)) L(2p(§—1)). (54)
Making the change of variable

= 2E-1) (0<x< o), (55)
we find that L(x) satisfies the differential equation
(& (x,p,m,S)—C) L(x) =0, (56)

where
L (x,p,m, S) = x(x+ 4p) (d*/dx?) + (— 2+ 2x¢(m+ 1 —2p) + 4p(m + 1)) (d/dx)
+m(m+1)—2p(m+1—S) (1+x/2p) (57)
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FIXED NUCLEI TWO-CENTRE PROBLEM 673
and S = R(Za+Zn)[2p. (58)
We will use two forms of solution for the inner equation, one appropriate when the electron is
near centre a(y = — 1), the other for centre 4. The centre a expansion is
Y_(n) = (1—=n*)¥mexp (—p(1+7)) A_(26(1 +7))- (59)
Introducing the new variable
y=2p(1+n) (0<y<4p), (60)
we obtain (Z(y, —p,m,D)—C)A_(y) = 0, (61)
where D = R(Z.—Zy)|2p. (62)
The centre b expansion is
Yo(n) = (t=y)¥mexp (—p(1-n)) A, (2p(1-7)), (63)
and defining z=2p(1—79) (0<z<4p) (64)
gives (&(z, —p,m, —D)—C) A (z) = 0. (65)

Actually, either form of solution, (59) or (63), could be used for the entire range of 9. We will solve
for A, by series expansions, and, with appropriate choice of expansion functions, just a single
term in the expansion of 4_will be a good description of 4_neary = — 1, and similarly for 4 near
7 = + 1. However, to evaluate /_ accurately near # = + 1 would require a large number of terms,
hence it is useful to have the two different expansions. Similar reasoning led Bates & Carson
(1956) to use two expansions for Y(#) in their work on HeH?2* (they noted potential differencing
errors).

Equation (56) hasa regularsingularity at ¥ = 0and an essential singularity atx = co. Equations
(61) and (65) have regular singularities at y or z equal to 0 and 4p; when R becomes infinite,
the singularity at 4p becomes an essential singularity.} Because of the infinite range of x, we shall
find that L(x) must be a polynomial in #. On the other hand, 4, can have exponentially increasing
terms in y or z for R finite. In spite of these important differences between the inner and outer
equations, we will be able to exploit the symmetry between these equations, to obtain C'” from C ¢
(orvice versa).

Dividing (56) by 4p, we get

(dd22 (m+1-— x)d +3(S— m—l—-C/Zp))L(x)

= 4[)( & —+(2(m+1)x— x2)§—+m(m+1) (m+1—-S)x)L(x)- (66)

For p very large, we can get a good first approximation for L(x) by ignoring the right-hand side
of (66). The confluent hypergeometric function satisfies

(v (B=) §5—a) Ml 5, = 0, (6)
S0 L(x) =2 M(3(m+1—=S8+C[2p),m+ 1, x). (68)
For x > 0, we can use the asymptotic expansion

I —a(J 1 1
Mo, ) = (Jé‘ ()/>S x; {Eo (“) J(! (ti) ﬂ) +0(WJ+1)}

+I’(,B)x“*ﬁe’”{§ (B—a); (1— “)J+0( 1 )} (69)

Ile) ;5o Jhal T

T The possible loss of nodes in Y (%) when R becomes infinite may be connected with this change in the character
of the singularity in the differential equations for /.

56-2
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674 J.D.POWER

where I'(f) is the usual gamma function, J and J” signify that we truncate these divergent sum-
mations after a few terms, and (a); is Pochhammer’s symbol,

@o=1, ();=afe+1)...(w+j—1) = Ia+j)/I(x). (70)
Since
%M( g me1,5) = () ~ L ((RZafNat...) (E—1)), (71)

the form needed in (18), we see that

$(S—m—1-C;/2p) = n,+3n,, (72)

where 8n; goes to zero as R —> c0. For 8z small, the identity
I'(a) I'(1 —&) = =/sin () (73)
gives 1/I'(—n—38n) ~ (—1)t1n!8n. (74)

Keeping only the two largest groups from (69),

I m!
M(=n—8mm+1,x) ~ " fm 4 €

— ) imlerdn I, (n+j5)! (n+m+j)!
(n4m)!™™ ’

(m+n) ! gnim+l = Jlai

(75)

In deriving (75), we have ignored terms of O(8z) from the first factor in (69); this is justified
because these terms do not have the large exp (x) multiplying them, and are truly negligible
compared to the second group in (75).1 We see that with L(x) we must have &n, = 0 even for
R finite, otherwise the second term in (75) would give a X(£) which diverged as exp (p£) as
& - oo. Thus, as our initial approximation,

Cy > —2p(2n,+m+ 1) + 2S. (76)

In a completely analogous fashion, we find the initial approximations
A(y) = M(y(m+1~D~Cl2p), m+1,7) (77)
and A (z2) > M(3(m+1+D—C[2p), m+1,z). (78)

For a centre a s.a. state, requiring that A_ reduce to L, as R - co gives

C, ~ 2p(2(Ka+3n,) +m+1) — 2pD, (79)

where &n, - 0 as R —> c0. However, for finite R, in contrast to the outer equation, we need not
and cannot take &n, = 0. A non-zero 8, is required so that A, can satisfy their boundary con-
ditions. We can take pso large that most of the nodes in Y (7) are concentrated near 9 = + 1, and
then we match-up 4, and /_ and their derivatives at some intermediate value of ; using = 0
will usually be the most convenient. For instance, for ¥(7) odd in a homonuclear o.e.d.m., we
require that 4, (2p) = 0. Using (75) for 4., if we take &n, ~ exp (—2p), the two terms will be
of comparable magnitude and can cancel to give zero. For a centre a s.a. state of a heteronuclear
o.e.d.m., we must have &z, ~ exp (—4p), otherwise Y(7) will be too large near # = + 1. In all
cases, on, must be exponentially small in p, and cannot go to zero merely as some power of 1/p.
Since exp (—p) does not contribute to an asymptotic expansion in powers of 1/p, we will be able
to ignore &z, when we find 5,,.

1 Damburg & Propin (1968) give this expansion including all the terms of order n. The gamma functions in
the first summation of their equation (22) should be multiplied rather than subtracted.
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FIXED NUCLEI TWO-CENTRE PROBLEM 675

By analogy with the results for A._, we define Ky for A, by

Ky +8n, = }(C[2p—m—1-D). (80)

Note that K.,—Ky = D. (81)
K., is an integer, but Ky will usually be non-integral. Using (52), we have

D > Ny(Zo—2Zv) | Za, (82)

and A, (2) 2 M(—Ka+ No(Za—Zy) | Zay, m+ 1, RZy(1—17)[Na). (83)

These results essentially reproduce those found by Gershtein & Krivchenkov in their work corre-
lating u.a. and s.a. states; thus far our treatment closely parallels their analysis.

We now return to the outer equation. To find the higher order terms in C;, we make the expan-
sion

L(x) = 3 &, L7 (84

(Hylleraas 1931). If we take the operator on the left of (66) to be the zero-order Hamiltonian,
and that on the right as the perturbation, then {L?*(x)} is the complete set of zero-order eigen-
functions and (84) is equivalent to the expansion of the total wavefunction in the set of zero-
order functions. Rather than use the framework of perturbation theory to find the expansion
coefficients, we simply substitute (84) into (56) and find that the g; must satisfy the three-term
recurrence relation
% giatPi&i+Vi&ia =0, (85)

where

oy = t(t+m) —1S,

Bi=—=C+2p(S—2i—-m—1)+S(2+m+1)— 22— 2im— 2 —~m— 1, (86)

vi=(+1)((+m+1)—({+m+1)S5,

and with boundary condition that g_, = 0. Baber & Hassé (1935) have proved the convergence
of this expansion.
We can use either 4_ or 4, to find the asymptotic expansion C,,. The expansion

A_(5) = Xy M(= (j +8n,),m-+ 1,5) (87)

leads to a three-term recurrence relation analogous to (85), with

a; = (i+8n,+m) (i+8n,+m—D),
B =—C+2p(2(i+8n,) +m+1—D) —2(i+5n,) (i +8n,+m+1—D) (88)
—(m+1) (1-D),

Yi = (i+08n,+1) (i+8n,+1-D).
A similar expansion for /4, results in the replacement of D by — D in (88). Having more than one
term in the expansion does not invalidate our previous conclusions about the magnitude of &n,;
also, we still require only a single 8z, to satisfy the boundary conditions.

We begin by converting the three-term recurrence relation into an cquivalent continued

fraction (Baber & Hassé 1935; Chakravarty 1939; Gautschi 1967). Replacing ¢ by i+1 in
(85) and solving for g;.,/g;,

8i+1l& = — %/ (Bisa +Vir18ir2l8ir)- (89)
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676 J.D. POWER

We have similar expressions for g, s/;41, Zs+3/gsa ---» and when these are substituted in turn into
(89), we obtain the infinite continued fraction

) 'i“i-l—l ) ’5+1“‘i+2 Vite Xiy3
) 7 ;g — = soe 90
)zg'b+1/gz ﬂz L ﬂz . ﬂi . ( )

Similarly, we get the finite continued fraction

. 100; s o0l: . o
Tigiale =~ R e 18, (91)
T— 71—

Dividing (85) by g; and using (90) and (91),

Yi1% YVi—e®i—1 Yo% Vi%it1 Vit1%ite
G ey ey N ey v 92)
In the limit R — oo, only the coefficient g, remains finite, so to avoid singularities in the ratios
gis1/g; in (92), we must use ¢ = n;. We can formally solve (92) for the separation constant; let
us denote the solution as C; (#, S, n;, m). When we use (92) for A_, we must take ¢ = Ka, and we
denote the solution as C,(p, D, Ka+58n,,m). Making the replacements p - —p, § > D, and
i—>i+8n, in (86), we find that y;¢;,; and g; from (86) are identical to those from (88). We thus

must have C,(p, D, Ky +8n,,m) = Cy(—p, D, Ky +5n,,m), (93)

so we can focus our attention on C; and then get C, by symmetry.
Consider an infinite continued fraction of the form

f=rl B (94)

o= B2 N (95)

the value of the infinite continued fraction is defined as
f=lim fy, (59)

if this limit exists. We define the jth numerators 4; and denominators B; by the recurrence rela-
tions

4; = b,.A,-_1+ajA,._2,} (97)
Bj = bjB{i—-l +aj'Bj——2’
for j = 1, 2, ..., with initial values
Ay=1, 4,=0, B,=0, By=1. (98)

One can easily prove by induction (Wall 1948) that
Jv = Ay/By. (99)

For our present purpose, it is more convenient to rewrite this as

_ Ay (4 _4_1) Ay AN—I)
fom (o) (), (o
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FIXED NUCLEI TWO-CENTRE PROBLEM 677

and use the result (Blanch 1964) that

A; 4; 5 (—1)aya,a4...0

. = J 101
B,” B, B,B,, (101)

to get
S=B.5 BB, BB, BB T (102)

As we shall see, each successive term (—1)7 aya, ... a;/B; B;_; in (102) is of O(1/p*) smaller than
the previous term, as long as j < p, and this furnishes us with a well-defined scheme for evaluating
C; by the method of successive approximations. Taking i = n;in (92), it turns out that the results
can be expressed most compactly in terms of the parameter

v=2i+m+1=2n4+m+1, (103)

in addition to p, S, and m. It is expedient to introduce at this time a notation which is motivated
by a discussion given in appendix 2 relating the successive approximations to perturbation
theory. We define the matrix elements of ¥ and E° by

Vietrs, ivne = %1 = $(v3 4 (24+4k) v —m? + (1 + 2k)?) —3S(v+1+42k—m), (104)
Viik, trir1 = Yirw = 2(V3+ (2 +4k) v—m? + (1 4+ 2k)%) — §S(v + 1 + 2k + m), (105)
Viei,sare = S(v+2k) = (v + 1 —m?) — 2k(v +£), (106)
¢I+lc, it = Vi+k,i+k'_8k,k’Vi, (2 (107)
EY, =2(S—v—2k), (108)
where k = 0, +1, +2,.... Note that
Bisw = —CHPEY o+ Vs, iane (109)

Comparing the general continued fraction (94) with the specific continued fractions (90) and
(91), we use

(for 90) by = Birs @ = —Viir—v,04nVirk,i1k—1> (110)

(for 91) by =i = —VirnirVinir1mo (111)
withk =1, 2, 3,....
The ratios g;,/g; both go to zero as R — o0, so as a reasonably good first approximation, we
can ignore the two continued fractions in (92) and simply use 8; = 0 to get

CO = pEY+ V- (112)

For the second approximation, we keep the lead term, a,/b,, of (102) for the two continued frac-
tions in (92), and find

ViicaVicae ViinaVeraa

CP =Co -2 . 7. (113)
-1 +1

We use C©from (112) to get
Bivie = —4pk+Viin orn (114)
and use this for #;,, when evaluating (113).

The matrix elements V are of O(p?); from (114), £, is of O(p*). It follows from the recurrence
relation (97) defining B, that B;is of O(¢7). Thus, in (102), B, B, isof O(p'), B, B, is of O(p®), etc.,
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678 J. D. POWER

and each successive term is of O(1/p?) smaller than the previous term. We now assume that we can
expand C; as a power series in 1/p. From the above discussion, the higher order terms which we
have neglected in forming (113) will give a contribution of O(1/3), so we expand (113) to get

1 / /
CE = pEI+Vis+ i ( wirtVirs,i = ViiaVia,d) + 1652 Ve esaVirn, era Vi, e 7V ia Vil 1,61 Viea o)
(115)
For the next approximation, we include the second term in (102) in the two continued fractions
in (92), getting

C(2) — Cél) V; -1 Kr‘l i—2 V—-2 i—1 V—l < 17i,i+1 V’If+1,i+2 171:-1—2, i+1 I/;:+1,i (1 16)
¢ ﬁz—l(ﬂz—llgz -2 —-1 1,—2V—2 'L——l) ﬁi+1(ﬂi+1ﬂi+2 - l'/;+1,'i+2 I/i+2,'i+1) ’
where we now use C{V to evaluate f;,;, in this expression. Expanding gives

6(2) = C(I) +55a73 128p3 i1 Vi, iVign, ix2Visa, 41+ 2((Vigy, 140) 2 = Vi, 041 Vi, 1))

—V1aVir, iy i—2Viea i1+ 2((Viey, -1 = Vi s Vier,0))}

1 !’
+ 1 024?"‘ {V; 1+1 I/;+1, 42 Vi+z i+2 Vi--l-z, i+1 Vi+1, it V t-1 V—1 i—2 Vi 1—2,1—2 Vz’—2, -1 Vz’—l, i

+ 4V, o1V eiVirn, iVinn, srive Vin = 3V, e Vi, e H Vo ed Vg o+ (Vi 144))
4V i aVics iaVier, iVier,o-2Viee, im0 = Vg saVicn, s H Vi oia Vigns + (Vi 420 B3 (117)

2y -1
We can extend these approximations to however high an order we require simply by including
more terms from expansion (102) for the continued fractions.

In the derivation of these expansions, we assumed that we could expand 1/4;,, as

1 1 Vitn i .

i () (118)
Given any value of , this is valid only for |£| < p, because V;}, ;. is proportional to k2. As we go
to higher and higher orders, we must eventually reach |k| > p, so approximation (118) must
break down. When this occurs, our expansion in 1/p will actually decrease in accuracy with ad-
ditional terms. The expansion of C,in powers of 1/p, which we have denoted as (jg, is thus seen to
be an asymptotic expansion. The approximations C{?, C{, C®, ... form a well-defined convergent
sequence of approximations to Cy, valid even for p — 0, whereas the 1/p sequence Co, CA, ... is
asymptotic for p large and singular as p — 0.

To evaluate C{V, C2, ..., we merely have to multiply together various combinations of matrix
elements of V. Each matrix element is a polynomial in the three variables S, v, and m. Evaluation
of the first few orders can be done by hand calculation, but the number of terms grows so rapidly
that we soon have to turn to the computer. These simple polynomial multiplications were very
easily programmed for computer evaluation, and in this way I have been able to extend the
evaluation of C; through O(1/p%),

Ce(p,S,ngym) = 2p(S—v}+{pS—§(12+ 1~ m2}+-—~{v (v2+1—m?) — (3v2+1—m?) S+ 2052

64p2{ 5v4 — 10v% + 6v2m? — (1 —m?)2 + (2002 4 20 — 12m?) »S

- (24:1)2 + 8(1 —m?)) S+ 8vS8%}

+———{v(331% + 1142 — 46v%m2 + 37 + 13m* — 50m?)

512;;3
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FIXED NUCLEI TWO-CENTRE PROBLEM 679

— (165v* 4 342v2 — 138v2m?2 + 37 + 13m* — 50m?) §
+ (284p2% + 292 — 156m?) vS2— (192v% + 64 (1 — m?)) §% + 40054}

1
6 4 __ 2 42 24 2 m2
+1024p4{ 638 — 34011 — 23912 — 14 4- 100v*m?2 — 39v?m? + 230v% m

+ 2m8 — 18m* + 30m? + (3781 + 136012 + 478 — 400v?m?2 — 460m? + 78m?*) vS
— (845V4 + 1810v2 4- 209 — 630v2m?2 — 250m2 + 41m4) S24 (8601)2 + 900 — 460m2) AL
— (384v2 +128(1 —m?)) $*+ 56155}

1
8192[)5 ———{P(5271% - 4139p% + 52212 + 1009 — 939v4m? + 465v2m*

— 3750v%m? — 53m® + 635m* — 1591m?)

— (368915 +206951% + 1566312 + 1009 — 469514m? + 1395v%m?

— 112500%*m2 — 53m® + 635m* — 1591m?) §

+ (10128v% + 3764012 + 14072 — 952012m? — 11 640m? + 1440m?) vS?

— (137500% + 301402 + 3630 — 9780v%m?2 — 4140m? + 510m?) §3

+ (952002 + 10080 — 5040m?) pS* — (307202 + 1024(1 —m?)) §5

+3360S5)+ ... (119)

We now obtain C~” by symmetry, using (93). Since 8, is exponentially small in p, we see that

we can set it equal to zero as far as the inner equation analogue of (119) is concerned. C must be
the same in both the inner and outer equations, so the next step is to equate 65 and C~,]. At this

point, instead of the variables v = 2n,+m+1 and »" = 2K, +m+ 1, it is more convenient to

introduce
N=Ny=ng+n,+m+1=§{v+v), (120)

A =mng—n,=No—2Ko—m~1=J(v—v). (121)

Giving just the first few terms to illustrate the procedure,

0=ty o(B)n-s] s v 5) -

+:_@{N3 +3NA2+ N(1 —m?) — (5—) (Za(3N?+ 342 + 1 —m2) + 6NAZ,)

+2( ) (N(/2+Z2)+2AZaZb)} (122)
We now want to solve this equation for p as a power series in 1/R,
B pibihyy (123

which we then square to get the desired expansion of . However, direct substitution of this
expansion into (122) would require the inversion of powers of (R/2p) and 1/p into series in 1/R,
and would lead to such a huge number of intermediate terms that the computer calculation would
become prohibitively complicated and expensive. It is much better to first expand

R
124

57 Vol. 274. A.
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680 J.D. POWER

When this is substituted into (122), we can easily group terms according to their order in p.
We in turn equate the terms of O(p'), O(p°), O(1/p), ... to zero and solve for the coefficients in
(124), getting

N N*Z, _N_Z_b) N*Z, (125)

hSZe hTTEZ )5z
Now, the algebra required to invert (124) into (123) is not too difficult, and we obtain
b =37+ EA =284 + A}[47 + A{64% + 1 — N2+ 3AA + A%} /472
+ A{A(39N2 — 10942 — 59 + 9m?) + A(25N2 — 6942 + 11 — 9m?) + 36124 + 1013}/327%
+A{10654% — 594 N?42 + 120342 — 234m?A% + 9m* + 33N* — 18 N?m? — 18m? — 105 — 138 N2
+ 4N (54m? + 20242 — 162N% — 118) + 4A2(1294% — 20N — 7 + 9m?) + 240434 + 5614}/12874
— A{A4(27274% — 2076 N242 + 55444% — 10564%m> + 93m* + 273 N* — T8 N?m? — 450m?
+1533 — 1470N?) + A(24214% — 3012N242% — 319242 4 8644%m? — TON? — 629 + 306m?
— 102N2m? + 219 N* — 21m?4) + A24 (172242 — 786 N2 — 138 + 318m?2)
+A3(103842 — 182N — 34 + 54m?2) + 420034 + 8425}/12875
+ O(1/R%), (126)
where I have used the abbreviations
7 = RZ,|N, A= NZp|Z,. (127)

, 72=(3A+

Finally, squaring (126),
W = —(Z3IN?) [} + A/t —324[r2 + A(64%+ 1 — N?)[273

+{AA(39N2 + 9m2 — 59 — 10942) + A2(1TN? + 19 — 9m? — 342)}/1674

+{A(10654* — 594 N2A42 + 123042 — 234m3A% + 9m* + 33 N4 — 18 N?m?

— 18m2 + 105 — 138N?) [64 + A24 (2142 — 111.N? + 63m? — 189) [16}/75

+{Ad4(— 272744+ 2076 N242 — 554442+ 10564%m* — 93m* — 273 N*

+ T8 N2m?2 + 450m2 — 1533 + 14T0N?) /64 + A2( — 2074 + 1044 N2A2

+ 243642 — 57642m2 — 42N2 + 371 — 162m? + 42 N?m? — 89N* + 15m*) 32

+ A3 (342 — 6ON? — 117 — 33m2) [32} /78

+ O(1/R7)]. (128)

The expansions for a s.a. state on centre b are obtained from the above results by interchanging

the indices , and ;, (the index , was implicit on 4 and N). For a homonuclear o.e.d.m., we set

Z, = Zy in these formulae. Then, ignoring terms ca. exp ( —4p), a g —u pair such as 1so; — 2po,
has their energies split equally about the average given by (128), with the splitting ca. exp (— 2p).

COMMENTS

I have compared expansion (128) for W(R) with the perturbation results of Dalgarno ef al.
and Robinson for the four s.a. states with N = 1 and 2, and found agreement. With Zy/Z, = A|N
as the perturbation parameter, the individual contributions to W from the zeroth- to third-order
energies are readily extracted from (128). From (126), we see that the sixth-order energy con-
tributes to the terms of O(1/R®) in (p/R). When we square this to find I, the fourth- to sixth-order
terms all cancel through O(1/RS). This is an example of the well-known result that if the wave-
function is in error by a term of O(A), the error in the energy is O(A2), whereas most properties are
in error by a term of O(A).
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FIXED NUCLEI TWO-CENTRE PROBLEM 681

Komarov & Slavyanov (1968) derived this W(R) expansion through O(1/R%). They did not
give the expansion for p for heteronuclear o.e.d.ms, but their result for the homonuclear case
(Komarov & Slavyanov 1967), given through O(1/R?), agrees to this order with (126) if we correct
an apparent misprint in their equation (32), replacing ‘R*’ by ‘2R3’.

The crucial step in obtaining our general expansions of p and W is getting the expansions of
C in powers of 1/p for the inner and outer equations. The subsequent steps are algebraic and
straightforward, albeit tedious. The procedure which I have followed in getting the C expansions
is itself a well-defined sequence of individually simple algebraic operations. One can thus easily
program a computer to evaluate these expansionst, and this enabled me to extend the expansions
of C, p and W to several orders higher than previously known. It would of course be possible to
extend these results even further using this approach.

These expansions are asymptotic series, but they can be very accurate for R ‘large enough’.
In our derivation, we assumed that R > 2Na.[Z, so that p would be large, but this is much too
vague and does not furnish us with a practical estimate of the required magnitude of R. Pono-
marev & Puzynina (1967) have shown that some simple physical reasoning both gives one an
estimate of the size of R required and rationalizes why the large R expansion can succeed in the
first place. We initially treat the electron as a classical particle, moving in the two three-dimen-
sional potential wells from the term — Za[ra — Za[rp in the Hamiltonian. The potential barrier
between these two wells has its minimum along the line joining the nuclei, a distance

RI{1+(Zv]Za)}
Umax(R) = _(\/Za+\/2b)2/R‘ (129)

When W < Up,,, the classical electron is trapped in either well ¢ or well 4. For 0 > W > Up,,.,
the electron is still bound, but moves back and forth between both centres. When we take
quantum mechanics into account, the allowed energy levels in each well are discrete, and the
electron can tunnel from one well to the other. However, if R is large so that the barrier is wide,
the electron may still be effectively trapped in one of the wells when W < Uy,

Our derivation of the expansion for Y(7) assumed that the electron was localized on centre a.
This enabled us to derive formulae using the centre as.a. quantum numbers, (26), and thisignores
any nodes in Y () near centre b. Clearly, we must have W < U, in order for the large R expan-
sions to be applicable. Using just the first two terms in (128) to approximate W, we find that
W < U,y for R > R, where

from centre a, with

R, ~ 2N¥Zo+2\/(Za Zv)}| Z2. (130)

Keeping additional terms in the expansion for W makes only a slight change in this estimate for
R,. The actual accuracy of the expansion will vary from case to case; one can get an estimate of the
accuracy with which (128) gives W by comparing the magnitudes of successive terms.

SPLITTINGS BETWEEN ENERGY LEVELS: QUASI-CROSSINGS OF
POTENTIAL CURVES

Our assumption that the electron is trapped in one well if W < Uy, breaks down if there is a
degenerate energy level in the second well and both states have the same nodal quantum numbers
ng and n;. This degeneracy occurs by symmetry for homonuclear o.e.d.ms and by ‘accident’

1 Barton & Fitch (1972) give many examples of the rapidly increasing usage of computers to do algebra.
57-2
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682 J.D. POWER

for heteronuclear o.e.d.ms. In such a situation, the electron has a much larger probability
of tunnelling from one well to the other as compared to the non-degenerate case, and since
the electron can occupy allowed energy levels in both wells, it is shared by both. The energy
levels in the two wells will interact and split, so in speaking of degeneracy, we will mean prior to
taking this interaction into account.

The accidental degeneracy in the heteronuclear case is especially interesting because it results
in quasi-crossings of potential curves, a phenomenon first noted by Ponomarev & Puzynina (196%)
in their extensive numerical calculations. When Z, + Zp and we ignore the interaction between
eigenstates in the two wells, the energy levels in the two wells move relative to one another as
R is varied, and can even cross. Consider a state with the electron localized in well 5 when R is

-0.6— /,339'_
| Tior
-0.8—
wor 6ho
-1.0—
— 1‘2 -
| | | ] | ] |
10 30 50 70
R

Ficure 1. Quasi-crossings of the potential curves of the 6ho, 7io and 8ko states of OH?8+,
Electronic energy W against distance R (atomic units).

very large, and suppose that as we decrease R, we reach the point R, where this state is degenerate
with one in well  having the same 7, and n, and that for R < R, thislatter state is higher in energy
than is the eigenstate in well . A crossing of the exact levels would contradict the o.e.d.m. non-
crossing rule, so when we take the interaction between the states into account, we find that the
electron is shared by both wells at R = R, and then localized in well a for R < R. As R decreases
through R, the electron moves from well 4 to well g, so the quasi-crossing of potential curves
plays a very important role in charge transfer in atomic collisions.

Our derivation of the 1/R expansion of I ignored all interaction with states of the second well,
so the potential curves calculated using (128) can cross. Figure 1 depicts two quasi-crossings
in OH®". The 6ho and 7io states both dissociate into O7" +H™, with s.a. quantum numbers
N,K,m = 6,5,0and 7, 6, 0. The 8ko state dissociates into O%" + H in its ground state. Using (128)
to calculate the potential curves, we find that of the 8ko state crosses the 7io curve near R = 44
bohr and the 6ho curve near 17 bohr. The exact potential curves have avoided crossings. The
8ko curve from (128) is valid down to R, ~ 13 bohr, but for 13 < R < 17 it corresponds to the
exact 6ho curve, and for 17 < R < 44, the exact 7ic curve. Only for R > 44 does it describe the
exact 8ko curve. Incidentally, the 8ko and 5go curves from (128) intersect near R = 8.5bohr,


http://rsta.royalsocietypublishing.org/

A

'y
fA \

o \

.
|
L

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

y \

r

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

FIXED NUCLEI TWO-CENTRE PROBLEM 683

but this is well below the R, values for these two states and thus meaningless. Figure 2 shows the
crossing of the 1/R curves and avoided crossing of the exact curves for the 4fo and 5go states of
BH5*,

We can calculate the exponentially small splittings, between the g —u pairs for homonuclear
o.e.d.ms and quasi-crossing states of heteronuclear o.e.d.ms by evaluating the exponentially
small 8, which we earlier ignored in finding the 1/R expansions. We have two distinct expansions
for Y(n) for a heteronuclear o.e.d.m., Y_fory < 0and Y for » > 0. Matching up these functions
and their derivatives at 7 = 0 gives

dy dy
) 4 —-:) =0, 131
( dy  “Tdy /), (131)

and we need a non-zero 8z, in order to satisfy this boundary condition. There has been some
confusion about the homonuclear boundary conditions. For a homonuclear o.e.d.m. we have
Y, () = £Y_(—19),and will drop the + and — subscripts. The total homonuclear wavefunction

—-0.88

—0.90{—

| ! | | | | |
127 B0 - 133

R

Ficure 2. Quasi-crossing of the potential curves for the 4fo and 5go states of BH+. The (1/R) series
approximate curves cross, the exact curves have an avoided crossing.

is either even or odd with respect to inversion through the molecular mid-point. Inversion takes
(&9, ¢) into (§, —9, ¢ +=). The exp (+im¢) gives a factor of (—1)™ when inverted, so we
must have Y(—#) = (—1)™ ¥ (#) for a g state and (— 1)™+1¥(7) for a ustate. To get ¥ (%) an even
function, we require that
dY(0)/dy = 0, (132)
and for Y(7) odd,
Y(0) = 0. (133)

Komarov & Slavyanov (1967) ignored the factor of (— 1)™ and used these boundary conditions
for g and u states, respectively, so their final equation for the energy splitting between g and u
states should be multiplied by (—1)™.

Let us denote the value of 8, found from (132) as 8ng and that from (133) as ny, so the g—u
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684 J. D. POWER

subscripts here denote the parity of Y (). Komarov & Slavyanov found that 8ng = —8ny to the
order to which they evaluated these terms, but were unable to prove this result in general. I
offer the following proof. We suppress the other parameters, which are irrelevant, and write
Y = Y(y,n), where # is either ng or ny. By assumption,

ng = K+08ng, ny= K+0ny, (134)

where 84 and 87y are both small and K is the s.a. parabolic quantum number, which gives the
number of nodes in Y in one of the wells. From the use of Taylor series expansions, the boundary
conditions (132) and (133) give

oY oY %Y
= = = Ngx—rs— +...=0 135
on 0,ng N lo,x ganan 0, K ’ (135)
oY
Y(0,ny) = Y(0, K) +8n“6— +...=0. (136)
7o, x
Solving for 8ng and &ny,
oY | oY
Sng = —n— | ooe| 137
¢ oy [ On0n o, x (187)
oY
Su = — Y/E " (138)
Consider
0 0Y(n,n)
— Y2 = —_—
55 720 m) = 2X(n,m) 2, (139)
which is zero at # = 0 when # = ng or ny. Again making Taylor series expansions,
0 0 02Y?
=Y ==Y +®tuz—=| +...=0 140
M o W ox “ondy 0, K ’ (140)
0 0 02y?
=Y? ==Y +Ongz—=| +..=0. 141
M long O ox “ondy 0,K (141)
Subtracting, we get
5 a2Y2
( ﬂu—Sﬂg)W - = 0. (142)

We know from the results of previous workers, and could show by several alternative arguments,
that 8ng = &1y, so we must have

02Y? . %Y o0YaoY

monlo,x (Ya”aﬂ—l_& %)O,K =0
Dividing this by (0Y/0y) (02Y[0on 0y) and comparing the results with (137) and (138) proves that
8ng = —8ny. We were justified in truncating all of these Taylor series expansions after just two
terms because the terms of O(8n3) are exponentially smaller than those we retained, and give
corrections to dz, of

! O (exp (—4p)),

(143)

which we are ignoring.

The series expansions which we used for X(&) and Y () led to a scheme for evaluating C/p
as a power series in 1/p which is, I believe, much easier to carry through than are the alternative
approaches which other workers have used. However, when it comes to determining &z, from
the boundary conditions, the series expansion becomes quite cumbersome. Still, it is very
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FIXED NUCLEI TWO-CENTRE PROBLEM 685

instructive to work through and find the lead term of 8n, for a particular case, a homonuclear
o.e.d.m. using boundary condition (133). We set D = 0 and drop the + and — subscripts on 4,
and (133) then gives 4(2p) = 0, which we want to solve for zy. Using (87) and (138), we have

Snu = % ij( "j: m+ 1a 2!’)/ % hj‘aQ-M(_j:m'l‘ 1, 2ﬁ) (144)
i=0 i=0 " Q)

In keeping with the spirit of the asymptotic expansions, we assume that p is very large and ignore
the fact that the summation index j must eventually surpass p, that is, p > j. Using (75), we keep
only the dominant terms and make the approximations

M(—j,m+1,2p) ~m!(—2p)7[(j+m)!, (145)
OM(—j,m+1,2p)[Qf ~ mljl(— 1)+ exp (2p)[(2p)7 ™+ (146)
We also make the approximations
hjally = —0y[fia > — (J+m+1)%4p(j+1-K) (5 > K), (147)
hially =~ —=v;4lBa = [4p(K+1—j) (j < K). (148)

Neither numerator nor denominator in (144) are dominated by the single term with j = K.
In the numerator, the factor 1/p from Ay ,/hg is cancelled by the one higher power of p from
M(—(K+1), m+1,2p), so the term with j = K+ 1 is of the same magnitude as the term with
j = K. Keeping only the lead terms, the sum in the numerator is from j = K to infinity, and the
denominator from j = 0 to K. The numerator gives

e (- () e (- () st -)

_ hg(—2p)¥ K+m+1 K+m+2 K+m+3
= (K¥m)! (1+ 5 (1+ T (1+ 8 (1+..)))). (149)
The denominator is evaluated similarly, and we find
_ (2p)pEtmile-tp K+m+j) 1K K) 1
o =S S 1 )9l 50 (199)

We recognize these two summations as respectively (1 — §)~(E+m+1) = 2K+mtlgnd (1 — §)K = 2-K,
s0

dny ~ (4p)2KAm+le—22[KI(K +m)!, (151)
in agreement with the results of previous workers. Note that if we only used the single term j = K
in the summations, the result would be off by the factor 22K+m+1,

This calculation demonstrates that the single term with j = K does not necessarily give the
dominant contribution to ¥(%) awayfrom # = + 1. Similar resultswill certainly hold in the hetero-
nuclear case. It is thus non-trivial to prove that the higher order corrections do not change the
number of nodes of the limiting s.a. wavefunctions used by Morse & Stueckelberg and Gershtein
& Krivchenkov in correlating u.a. and s.a. states.

The splitting between g and u states of homonuclear o.e.d.ms has been evaluated by Herring
(1962), Landau & Lifshitz (1965), Smirnov (1964), Ovchinnikov & Sukhanov (1964), Gershtein
et al. (1965), Komarov & Slavyanov (1967), and Damburg & Propin (1968). For heteronuclear
o.e.d.ms the splitting at a quasi-crossing has been estimated by Ponomarev (1968) and Komarov
& Slavyanov (1968). These authors agreed that the quasi-crossings occur at points where

W = —(Za—Zn)2/2(Ka— Ky)?, (152)
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686 J.D.POWER

but their estimates for the splitting disagree. Using the J.W.K.B. method, Ponomarev found
SW = —4W(4p)FatKotle=20[Ky! Kp! 4/(Na Ny) (153)

for o states, whereas Komarov & Slavyanov found the general result

—4 W(4p) K, +Ky+m+1 e—2p

W = (Ka—Kn) {Ka! K, /(Ko +m) ! (Ko +m) 113

1
X {1 —4—p(K§+K§+4KaKb+(m+ 1) (8Ka+3Kn+m+2)) +...}, (154)

the lead term of which does not reduce to (153) when m = 0. Both tested their results only for the
splitting between the 4fc and 5go states of BH5t. Although the value given by (154) is quite
accurate in this case, the second term in (154) is about — 60 %, the size of the lead term. This is
much too large to confidently truncate the expansion with just two terms, so besides attempting
to resolve the discrepancy between (153) and (154), I shall also extend the order of the results.

The modified comparison method (Slavyanov 1967), used by Komarov & Slavyanov, seems
to be the most suitable approach for simultaneously finding 8n, for homonuclear and hetero-
nuclear o.e.d.ms. Treating both cases simultaneously will make clear their similarities and dif-
ferences. For 9 near — 1, we use a solution of the form

Y_(n) = My 3 (202 () [V () (1 =%}, (155)

where M, 4, is the Whittaker function (Abramowitz & Stegun),

M, u(y) = e Ryt D M(G(m+1) -y, m+1,9), (156)
a2 1y, 1—m? B

This gives an equation for #(9),

2((Cl2p—Dy) x()*\  1—m? 4 t’)z 1 /" 3 [t"\?
ne _ z - B O T D S —
(o= (S - ) (e () ) - (73 () )] = 0 s
where a prime denotes differentiation with respect to 7. For a centre « s.a. state, comparison
with our previous results shows that as R - co we must have #(7) ~ 1+ and

X = Ka+3(m+1) +3n, (159)

The inner equation has regular singular points at 9 = # 1. For the solution used near y = — 1
requiring that the regular singular point at 97 = —1 remains a regular singular point in the
transformed equations gives the condition

t(—1) = 0. (160)
Then, in order not to have divergences in (158) at 9 = — 1, we must have
’ 1—m? " ’
C/p=—2D+4xt(—1)+-—27)—(t(-—1)/t(——1)—~1), (161)

which is used to get the expansion of C/p.
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FIXED NUCLEI TWO-CENTRE PROBLEM 687

We now solve for ¢ and C/p by expanding them as power series in 1/p, grouping terms according
to their order in p, and solving successively for each order. I find

T e e

+3((x—D)? +0) +bx(x— D}+Zl3{ X((f‘+f 1n2(12”)+<3X22JE;"2F(”’§2‘D)111(1;’7)
_x((x—D)*+w) (x—D)((x—D)*+w+1) (3X2+w) (x—D)
2(1—7) 4(1—-7)? 4(1+7)
+5(10x — 182D + 9y D2 20D — D3+ Bory + y — D)} , (162)
where o = }(1—m?) (163)

Komarov & Slavyanov derived this general expansion through O(1/p?), and the homonuclear
expansion (simply set D = 0in (162)) through O(1/p?). We can use (162) in (161) to find through
O(1/p?) the expansion C, analogous to (119) for C;. Komarov & Slavyanov were able to get C,
through O(1/p%) by finding the first few terms in Taylor serics expansions about 7 = — 1 of the
1/p® and 1/p* terms of ¢(7).

To get Y, (1), used near 9 = + 1, we simply make the replacements

X=>x, 1>-1 D->-D (164)
in Y_(%). ¥" is a new index, which we shall relate to y. Using Y_in (161) gives
C, = 2p(2x— D) —2(x*+w—xD) - (1/2p) (2x(x*+ ©) = (3x*+ ) D+xD?) +...,  (165)
whereas using Y in its analogous equation gives
C) = 2p(2x' +D) ~ 2(x"* + 0+ y'D) — (1/2p) (2x' (x* + ) + (83X +w) D+ y'D?) +.... (166)

Since these two expansions must be equal, we can express ¥’ in terms of y, D, m and p. Equating
terms of O(p) gives

x—x =D, (167)
and this also makes equal the next few orders in (165) and (166). However, this does not rule out
the possibility that (167) is accurate only to O(1/p?) for some j. Komarov & Slavyanov (1969)
showed that (167) is exact for the special case Zp = 0. One can easily show that if (167) holds
then the elements of the continued fraction (92) are symmetric with respect to ¥ and y’, so
we conclude that (167) is exact. In the homonuclear case, we must have x’ = y by symmetry;
this is consistent with (167).

In order for Y, (%) to reduce to the y-part of ¥® as R — 0o, we must have

X' = Kp+(m+1)+5n,. (168)

To have quasi-crossing, we need degenerate levels in the two wells. y must be of the form (159)
to have an allowed level in well g, and y’ of the form (168) for well 4. In general, we will not have
both satisfied simultaneously; when they are, (167) gives

D = K,— Ky = integer, (169)

and this in turn gives (152) for the energy at the point of quasi-crossing. In the homonuclear case,
(169) is satisfied for all R.

58 Vol. 274. A.
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688 J.D.POWER

In deriving the 1/R expansions of W, we essentially assume that there is no overlap between ¥#
describing an cigenstate of well 2 and PP of well 5. When %2 and ¥P are degenerate, the electron
is shared by both wells, and we must express the wave function as a linear combination of ¥
and ¥P. If there is no overlap between ¥# and ¥, this linear combination must be

W, = WayPh (170)

in order to have the two degenerate wavefunctions orthogonal. We previously argued that the
homonuclear wavefunctions must be of the form(170) by symmetry. Continuing to ignore overlap
between ¥2 and ¥, the energy for ¥, is the average of (128) and its centre b analogue, giving

_1 Zg Zb . ?)Na,Aa,Zb Z% Za, 3NbAbZa
{ SN R aZE tTINT R +: (171)

RV T

(If the asymptotic series were exact, both terms in (171) would give the same numerical value
atR,.) When Z, = Zy, the termsin (171) are identical.

The energy is equal to (152) at the point of quasi-crossing, so we equate (171) to (152) and solve
for R. Keeping just the terms through O(1/R) in (171) gives the starting estimate

Zo—Zy)? 1 (Z%F ZZ\\!
0) — (Zo—Zn)* 1 (Z3 Z§
R (Za+Zb){(Ka_Kb)2 2(N§+N§)} (172)
We then improve this initial guess by using the iteration function
. Zo—2Zn)? 1(Z2 ZE\\! NoAoZy NoAnZ, .
iy _ [(Za=Zv)® 1(Zs | Zy - a2 (1)
R {(Ka,—Kb)2 2(N§+N§)} {Za—l—Zb 3( zZ. Tz, )/21%q +>
(173)

We find R, = 16.71 and 44.31 for the two quasi-crossings of OH®" shown in figure 1, and
R, = 12.92 for the BH" quasi-crossing in figure 2. Note that the two curves in figure 2 do
not intersect at exactly W = —§. Evaluating additional terms beyond O(1/R®) would possibly
improve the agreement between the actual and predicted intersection points, but because
the series are asymptotic, the agreement also could worsen. The minimum splitting between the
two exact curves in figure 2 is at R = 12.96, so there is a slight ambiguity in defining the ‘point’
of quasi-crossing.
We will now evaluate 8n,, and then the splitting. Let us denote the dependence of #(5) on the
remaining parameters as ¢(7; p, X, D). The replacements
p—>—p, x—>—% D->—-D (174)
cause the changes
Bivke = Bicks %t > Yicks Vi = % (175)
in the continued fraction (92). Since our expansion of (92) treated the finite and infinite continued
fractions exactly the same, (175) makes no change in our expansion, hence C~,] is invariant to
(174). It then follows from (158) that
1305 X%, D) = t(n; —p, =X, = D). (176)
We define
m!(—2pt(1; , X, D))* exp (= pt(1; p, ¥, D))
G 305 Xs D) = 7
02600 = G et 0420 a3 0, D)
S (3(m+1) —x); (3(1 —m) — ), }
x| 3 2 i —Xi po(1)yr+y |, 177
V5 S s By Ol ()
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FIXED NUCLEI TWO-CENTRE PROBLEM 689

and use (69), (155), (156) and (176) to obtain

Y_(n) = (1=9)~H{(= )"0 G(p; p, x, D) + G(n; —p, —x, = D)}, (178)
which is valid in the asymptotic region near # = 0. Using (164) to get Y, from Y_, we have
Yi(n) = (1=7")H{(= 1) ¥ G(=n;0, X', = D) + G(=7; —p, =X, D)}. (179)

Using (162) for #in (177), after considerable algebra I find
m!

(i (m+1) +x)

x {1+ (1p) {(x*+x + 0= D(1+2x) + D?) [2(1 —7) = (¥* = x + ) [2(1 +7)

—3(8x2+w—4xD + D?)}

+ (1/p?) {( = 4x* — x>+ 3x% — 6x%0 + y0 — 20 + D(12x% + 22 + 8yw

+ 20 —3y) —D?(13x2+ 2y + 3w) + D3(6y + 1) — D*)[8(1 —7%)

+ (¥ +4x3+5x%+ 2 + 2x%0w + 4y + 02+ 20 — D (4% + 122

+ 10y + 4w + 40 + 2) + D?(6)2 + 12y + 20 + 5)

—D3(4x+4)+DY)[8(1—n)?

+ (' — 4x° + 5x% — 2y + 2x%0 — 4y + 20 + w?) [8(1 +9)?

+(x—D) (2x®—5x2+3x + 2xw — 3w)[8(1 +7)

—15(10x3—18)%D + 9y D% — 20D — D3 + 6wy + y — D)

+ 35 (9x* + 62w + w? — D (24 )% + 8xw) + D?(22x% + 20w) — 8y D3 + D4)

+0(1/p®)}. (180)

G(n; b5 X, D) = (= 2p(1+7))% (2/(1+7))x-De-pa+n

This gives
G(0; 9, %, D) = ml(—4p)x2-Pe2(I(}(m+1) +x))
x {1+ (1/4p) (—3x%+4x —w—2D + D?) + (1/32p%) (9y* — 443 + 642 — 2y
+ 6% + w? — 20w + 160w + D(16x% — 64y — 6 + 8w) + D?( — 62+ 22y
+20—20) — 10D3+ D% + O(1/p3)}, (181)
(©fom) G(0;p, x, D) = G'(0; p, ¥, D) = (=p) m! (—4p)*2Pe~?(I'(F(m+1) +x))~*
x {1+ (1/4p), (—3x*—4x —w +2D + D?) + (1/32p?) (9x* + 4> — 32y?
—2x + 6x%0 + w? —4yw — 16w + D( — 8x%+ 32y + 10) + D?(— 62+ 6
—12—-20w) —2D3+ D*) + O(1/p%)}. (182)
First consider the homonuclear boundary conditions. Equation (133) gives
(= 1)~ G(0; p, X, 0) +G(0; —p, —,0) = 0. (183)
Using (159) and (74), we have the factor
1I(5(m+1)—x) ~ K!(—1)K+18n, (184)
from the second term, and some simple algebra then yields
By = (4p)2+m 1 e=20 (KI(K +m) 1)~ {1 - (1/2p) (3x* + o)

+ (1/8p%) (9x*—10x% + 620 — 6w + W2 — x) +...}. (185)
58-2
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690 J.D. POWER

One finds that using (182) for boundary condition (132) gives dn, = —8ny, which serves as a par-
tial check on the correctness of expansion (180). Imposition of the general boundary condition
(131) leads ultimately to

(I(E(m+1) = x) I'(3(m+1) = x")) = (= 1)xx=m=1(4p)2xt0e~42 (L(F(m+ 1) + )
x I(3(m+1) +x))7 {1 = (1/2p) (x> + X2+ 4xX" + 20)
+ (1/8p%) ((x%+ X2+ 4xx’ +20)% — ¥*— 9x*x" — 9xx "2
= X?=x—x —60(x+x))+0(1/p*)} (186)

"The value of 87, found by solving this equation depends dramatically upon the values of y and
x'. If Zp = 0, then y is given by (159), we find y — ¥’ = N, so that ¥’ is negative and (186) gives
&n, = 0, as expected. If y is of the form (159) and §(m + 1) + ¥ is not too close to zero or a negative
integer, we find &n, ~ exp (—4p). We are particularly interested in the solution at a quasi-
crossing, when y and y’ are of the forms (159) and (168), respectively. Then both gamma func-
tions on the Lh.s. of (186) give a factor of &n,, when expanded as in (184), and we find

On, = + (4p)KatK tmtle=20(Ky! Kp!(Ka+m)! (Ky+m)!) =5 {1 = (1/4p) (x> +x"2+4xx" +20)
+(1/32p%) ((x*+ X2+ 4xx" +20)% = 2(¥> + 9x%x" + 9xx 2+ X+ x + X’
+6w(x+x)))+...} (187)

When Z, = Zy, this simplifies to +&ny of (185).

We ignored 6r, when we carried out the final steps of the derivation of (128), the 1/R expansion
of W(R). Exactly the same analysis goes through if we do not ignore &n,; we must merely replace
Ka by Ky +38n,in these equations. The net result is to replace Ny by Ny +58n, and 4, by 45 —38n, in
(128); the first few terms then are

Wa(R) = — Z2[2(Na+8n,)2— Zo/R+3(Na +n,) (Aa—8n,) Zo[2ZaRe+....  (188)

This shows that a negative &z, lowers the energy and a positive 3, increases the energy. Analogous )
results hold for the centre b expansion. In the homonuclear case, we mustidentify 8z, = (—1)™3ny
for the u states, which are higher in energy for m even and lower for m odd.

Expanding about &n, = 0,

W = Wls,m=0+8nﬂaW/68n,]|5M=o+ cees (189)
and then
SW = 2|5n,| OW |08, | 5pnmp- (190)

At the point of quasi-crossing, the proper energy expression is (171), the average of the centre a
and b expansions. Although (almost) equal numerically, the derivatives with respect to 3z,
of these two expansions are quite different. This gives

_ Za  Zh _o((Na—4a) Zy  (Na—4b) Za) 2
SW = lﬁnql{—@+w~%—3< A + 7 /2Rq
_ ZypNa(1 —4Ng + 643 —6Noada)  Za Ny(1— 4N + 643 — 6N Av)

ZIRE ZiRS +} (191)
From (169), the value of p at R, needed to evaluate n,, is

plr, = Ry(Za—2Zv)[2(Ka— Kb). (192) .
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FIXED NUCLEI TWO-CENTRE PROBLEM 691
In the homonuclear limit, 81 of (191) reduces to
SW = Wy—Wy = (= 1)m2e~EN+N (2R| N)N-4(N3K! (K +m)!)~1
N 2 2 2y V? 2 —342 2)2
><{1+ZR(3N +8NA—BA 14 m) 4 550 (3N? 4 SNA =342~ 1 4 m?)
— 48 N2 — 48NA — 28 N® — 52 N?A — 84 NA% — 28N + 4 Nm? + 2043

+204 — 124m2) +} (193)

where I have used (126) to eliminate p. Aside from the factor of (— 1)™ which they omitted, this
is equivalent to the Hj results of Komarov & Slavyanov (1967) and Damburg & Propin (1968)
(who give one higher order).

To facilitate comparison of (191) with the heteronuclear result (154) of Komarov & Slavyanov,
we re-write (154) as

SW = 2|8n, | (Za — Zb)?/(Ka— Kn)>. (194)

il

To get this result, they obviously differentiated (152) for ¥ instead of (171). This is inconsistent,
because in the homonuclear case they differentiated (171), as I have done in both cases. Also,
since Ko— Kp = y—x' = D is independent of 8n,, 0(Ka— Kp)[08n, = 0 instead of 2 as they have
used. Ponomarev noted that his expression for W, (153), does reduce to the lead term of the
homonuclear result. However, the lead term of my result, (191), is not equivalent to (153)
except in the homonuclear limit. I have not investigated this discrepancy any further.

For the BH" quasi-crossing, the exact splitting at R, = 12.92 is 4.4 x 10-3a.u., and (191)
gives 8W = 5.1 x 10~3a.u. For OH®", the exact splitting at R, = 16.71 is 2.1 x 10-3, (191) gives
2.8x 1073, Formula (191) predicts 58I/ = 4.1x 1072 for the quasi-crossing at R, = 44.31.
Using double precision arithmetic (carrying about 15 decimal digits), I can usually calculate
W accurate to 12 digits with my computer program, but I am unable to evaluate accurately this
particular splitting because the roots are too close together. I can only state that the exact split-
ting is ca. 10712 at R = 44.316895119. Such precision in R is required because the potential curves
are intersecting sharply, so a slight change in R makes an order of magnitude change in the split-
ting. For instance, at R = 44.316890, the exact energy splitting is 2.5 x 10-8. The accuracy of the
homonuclear splitting formula has been tested by Damburg & Propin against some of the exact
Hj energies later tabulated by Madsen & Peek (1971), with excellent agreement.

Even three orders in expansion (187) for &n, is insufficient in many cases. For the OH®*
splitting at R = 16.71, the successive terms in the 1/p expansion are (1—21/2p+ 138/(2p)2+...)
=(1-0.898+0.252+...) ~ 0.354. The sum is converging very slowly, and there is thus
considerable uncertainty in our result. Using the ¢, transformation (Shanks 1955; Wynn 1956)
to accelerate the convergence gives the estimate 0.299, which in turn gives 8W = 2.3 x 103,
improving the agreement with the exact splitting. We really need several more orders in the 1/p
expansion in order to extrapolate with some degree of confidence. The ¢, transformation can also
be used to accelerate the convergence of the 1/R series for W. From the work of Dalgarno &
Lewis (1956), it may be most accurate to ‘sum’ the terms of each order in (Zy/Z,) separately.

Keeping just the lead terms, (178) gives

Y_(n) & (1= 72)=bm! (= 1)Ea{(2p(1 +1))t0 (2] (1 —7) o-D e~P040] (Ko m)
— 8, Kl (3(1—7))-2(2p(1-+ 7)) o ertin}  (105)
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692 J.D. POWER

for a centre a s.a. state, where xoy = Ka+$(m+1). This expression for the dominant term in
Y_(n) is valid inside the barrier separating the two wells. When 8z, ~ exp (—4p), asitis away from
a quasi-crossing, the second term in (195) is exponentially smaller than the first term, and com-
pletely negligible. At a quasi-crossing, using (187) gives

Y_() = (1= ~dml( = O)Re{(2p(1 +7)) (2] (1 — 7)) w-P e (Ky +m)!
T I 20(4p)% ((1— 7)1+ 7) 620D (Kal (Ku +m) ! Kol (K +m) ). (196)

The two terms are now of comparable magnitude near 4 = 0. Moving towards 4 = + 1, the first
term is decreasing exponentially and the second increasing exponentially, so that the first term
is the asymptotic limit of ¥2, the second, of ¥®. The wavefunction is increasing exponentially as
we penetrate through the barrier into either well, and the electron is thus shared by both wells.
Note that when 8, is positive (uppersignin (196)), the wavefunction has a node inside the barrier,
just as Y () odd has a node at % = 0 in the homonuclear case.

Assume that Z, > Zy and let two states be specified by the u.a. quantum numbers nlm and
n'l'm’. Let us gather together the conditions for a quasi-crossing of their potential curves as R
is decreased from an initial value larger than any possible R,. If one or both of these states quasi-
crosses with one or more different states as R is decreased, we substitute the quantum numbers of
the state(s) of the most recent quasi-crossing(s) to continue the investigation at smaller R values.
Let us assume that nim and n'l'm’ are still the appropriate quantum numbers. We must have:
(1) n—I=n"—10"and m = m’ so that n; and ny are the same for both states; (2) if nlm correlates
with a centre a s.a. state, Ny Kam, then n'l'm’ must correlate with a centre b s.a. state, Ny Knm,
and vice versa; (3) since Zy > Zy, we must have Za[Na < Zy[Ny to have a possible intersection of
the 1/R curves; (4) with R, given by (173) and W(R,) by (152), we must have W(R,) < Upax(R,),
otherwise the 1/R expansions are invalid.

For example, consider Zy = 1. The state with n'l'm’ = Z,, Z, — 1,0 correlates with the s.a.
limit hydrogen atom ground state, N, K, m = 100. The first state with which it could possibly
quasi-cross is nlm = Zy—1, Zy — 2, 0, which gives NaKam = Zy—1, Z,—2,0. The energy at R,
is then — (Za—1)?%/2(Z,— 2)%, so we must restrict Z, > 2. With Z, = 3 and 4, we find R, < R,
so these crossings are meaningless. The first quasi-crossing occurs with Z, = 5.

Neither Ponomarev nor Komarov & Slavyanov recognized that the 1/R series energy should
be (171) at R,. Instead, both used equations of the form

—(Za— Zn)22(Ka— Kn)? = — Z2|2N2 = Zy|R+ ... = — Z2[2NZ—ZoJR+...  (197)

to find R,. The rates of convergence of the two series are quite different, so Ponomarev, who only
had these series through O(1/R?), noted considerable fluctuation in his value of R, depending
upon which of the equalities in (197) was used. Ponomarev has given a lucid discussion of quasi-
crossings. By truncating W(R) at O(1/R), he was able to obtain an analytical expression for the
number of quasi-crossings. This truncation limits the accuracy of his results, and a case which is
close one way or the other should be tested directly as I have indicated above, with the inclusion
of higher order terms.

It has been suggested in the work of Gershtein & Krivchenkov (1961) and Ponomarev &
Puzynina (1967) that these results on intersections of potential curves of the same geometrical
symmetries and on quasi-crossings may be used in discussing processes such as charge exchange
involving the hydrogen mesic atom and a nucleus. All of our results, including the very existence
of potential curves, are based on the assumption that we can ignore the nuclear motion. This is
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not too bad an approximation for the systems Zze~Zp, where the nuclear masses are several
thousand times larger than the electron’s mass. It is a very poor approximation for Z,u=Zp,
where the nuclear masses are only about 10 times larger than that of the p~ meson, so these
results should be used in such cases only with much scepticism.

I would like to thank my supervisors past and present; Professor W. Byers-Brown, with whom
I initiated my study of o.e.d.ms; Professor R.M. Pitzer, whose suggestion that I develop a
computer program to calculate exact o.e.d.m. potential curves sparked the research reported in
this paper; and Dr R. L. Somorjai who allowed me latitude to pursue this work and whose con-
versations and questions led to my eventual clarification of several initially vague ideas. In addi-
tion to comments from the aforementioned trio, Professor D. R. Bates, F.R.S. and Dr J. M. Peek
made valuable suggestions regarding a preliminary report of some of this work.

APPENDIX 1. DIVERGENCE OF THE CONTINUED FRACTION
FOR Y(7)
The expansion

Y(s) = (1=n?)¥mexp (=p(1+1)) 3 BLP(2p(1+1)) (A1)

has been suggested by Buckingham (1961) and Ponomarev & Puzynina (1968), and is a special
case of (87) with 8z, = 0. The continued fractions resulting from these expansions do not converge.
Either the expansions (87) and (A1) are themselves divergent, or else the ratios 4;,,//; are not
given by the continued fractions analogous to (90).

Ifwe replace a;, §; and vy, in (85) by s; a;, 5; f; and s;y;, where s; + 0, and then proceed as before,
we get

SeS. ’)/.a. S S ’)/. (o )
— t0i+1 £ 1944194 +2 i1 7H+2
S¥ihiyafhs = — (A2)
SiriBenn—  SiraBive—
This is known as an equivalence transformation, and does not affect the value of the continued
fraction. Taking s; = 1/8,, we have a continued fraction of the form

. V. V,
3 1+1 'L+2.“, (A3)

with v; = y,0;.1/8;Bs41- A necessary condition for the convergence of a continued fraction is that
its ‘tail’ converge, so we can choose 7> p in (A3) to investigate convergence. We find that
v; = (3 +pfi+...) for both (87) and (A1). Blanch (1964) proves that one must have v; < } in
order for a continued fraction of the form (A 3) with v; > 0 to converge, so the continued frac-
tions from (87) and (A1) both fail to converge. Their successive approximates f, = 4,/B,,
form an asymptotic series, and we were not wrong in using them to get the asymptotic expansion
6,7. For the continued fraction from the outer equation, we have v; = (} —pfi +...), so it converges.

When we substitute (A1) into the inner equation, we get
.EO {0 by 1+ Bty + vy} LT (2p(1 +7)) = 0, (A4)
]:

where a,;, #; and 7y, are given by (86) with § — D and p ——p. The functions LT are linearly
independent, so the only way that (A4) can be true for the denumerably infinite set of terms in
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the sum while # ranges over the non-denumerably infinite continuum of values of  in (—1, 1)
isto have

aphi g+ ity + vk = 0. (A5)
If instead of (A1), we use
Y0n) = (A=n?)mPexp (=p(1+7)) 2 hy(2p(1+7)), (A6)

we get an equation of the form (A 4) with different coeflicients and with L*(2p(1+%)) replaced
by (2p(1+%))?. We can use either the above argument or a theorem on power series to get (A 5).
Baber & Hassé (1935) proved that (A 6) converges. When we use the analogue of (A1) for the
outer equation, (84), we can multiply (A4) by exp (— $x) LP*(x), where ¥ = 2p(£— 1), and inte-
grate from x = 0toocoand use the orthogonality of the associated Laguerre polynomials to get (A 5).
We cannot do this for (A1), because 2p(1+ %) ranges only between 0 and 4p, and instead of
giving zero when ¢ = j, we would get integrals ~ exp (—4p). Even if the first argument for going
from (A 4) to (A 5) is somehow wrong and we have to use the above approach, we can completely
ignore exponentially small terms when finding the 1/p expansion, so our previous result for
C, remains valid. It is not clear whether the continued fractions from (87) and (A1) diverge

because these expansions themselves diverge, or because we have somehow erred in going from
(A4)to (A5).

APPENDIX 2. ASYMPTOTIC EXPANSION BY PERTURBATION THEORY

A recurrence relation such as (85) is equivalent to the infinite matrix equation
Mg -0, (A7)

where gis an infinite column vector with elements g, g, g5, - .., 0 is the infinite zero column vector,
and M is an infinite matrix with elements

M, 5 =00, 514 Bi0:, 5+ 70, j42s (A8)

where 8; ; is the Kronecker delta. In order to have a non-trivial solution for the g;, the determin-
ant of M must be zero. Defining the truncated determinants

fo 7y fo o 7
det, = f,, dety= o B P dety=| o, p4 %1 yeen (A9)
0 o s

the value of the infinite determinant is limit det;. By expanding det; by cofactors of its ¢th row or
column, one finds o

det; = f;_ydet; y —y; o2, g det; ,. (A10)
This is the same recurrence relation as (97) for the numerators and denominators of the continued
fractions; one can show that det; are equivalent to the numerators.
Consider the solution of
(H'+AV—-E)¥; =0 (A11)

by perturbation theory. We assume that we can expand

W, = W2+AT§+A2W?+...,} (A12)

E, = B2+ AE}+ 2E3 + ...,
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and solve the resulting equations by expanding ¥}, W%, ..., in terms of the complete set of zero-
order wavefunctions. One finds (Hirschfelder, Epstein & Byers-Brown 1964)

V..V, V.VIV.
1 _T... 2 — NV __ 1379 . 3 _ §V gV 17"k ki .
Ef=V Fi=X iy B=SY gl o (A13)
where Vy, = (V9| VW) and Vi, = Vj;,—V;;6; ;.. The prime on X deletes ¢ from the infinite sum-

mation-integration over all states.

On the other hand, suppose that we directly expand the total wavefunction ¥, in (A11)
in the basis set of zero-order functions. In order to have a non-trivial solution, the determinant
of elimination must vanish,

E} + AV~ E; AV AVge
Vi BENG-E W | "

APy AV E3+ AV — E;

Solving this determinant for £, we express the result as a power series in A; it obviously must be
equivalent to the perturbation expansion (A 12) of E,.

Dividing all of the elements of M by p and using (104) to (109), we see that det (M) =0isa
special tridiagonal case of (A 14) if we identify 1/p with A and C[p with E,. We can thus use the
perturbation energy formulae (A 13) to get the 1/p expansion of C. We have E?— E? . = 4k in the
denominators. Only j = 7 + 1 contribute to the sum over states in £, because V;; = 0 except for
Jj=tand ¢+ 1, and thus

E} =3V e1Viv,i—ViiaVica ) (A15)
In the third-order energy sums, the only non-vanishing terms are j = £ = ¢+ 1, and through
third-order we find (115), derived earlier via the continued fraction.

I actually obtained € in (119) by evaluating the perturbation energies through sixth-order.
I later discovered the equivalence of this approach to the continued fraction method described in
the body of the paper. Both methods have their merits. I believe that it would be easier to find
higher order terms via the continued fraction. Also, the derivation of the 1/p expansion of C
from the convergent successive approximations to the continued fraction clearly showed that the
1/p series is asymptotic. With the perturbation expansion of the determinant, it is obvious that if
the matrix elements away from the tridiagonal were not identically zero but were exponentially
small in p, they could be ignored in getting the 1/p expansion.

APPENDIX 3. EXACT ANALYTICAL SOLUTIONS

Demkov (1968) has shown from fundamental considerations that X(£) and Y (%) can have
exact elementary solutions when § and D are integers. This also follows directly from our series
solutions. Let Z, > Zp, so D > 0. With expansion (A 1), we have a; = 2( +m) — D in the three-
term recurrence relation; with (A6), o; = 2(¢+m—D). When D =i+m, o; = 0, and both of
these expansions terminate exactly after 7 terms. The centre b expansions, with D —— D in the
recurrence relations, cannot terminate.

If (A1) and (A 6) both terminate, we can regroup terms to change one expansion into the other.
With D an integer, we find also that their truncated determinants give identical equations for C.
This seems to indicate that we have not ignored terms ~ exp (—4p) in getting the three-term
recurrence relation from (A1), and that (A1) is an asymptotic expansion unless it accidentally
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truncates. With m = 0 and D = 2, the 2x 2 determinants from (A1) and (A6) both give
C?—2C—4p® = 0, so 5
G

14+ 2p(1+1[4p2)%
= +2p+1+4pTF 1/64p3+1/512p5+ ... (A 16)

This checks with our general expansion for 5,7 using D = 2 and Ky = O or 1.

Each of the potential curves for BH5" in figure 2 has D = 3 at their intersection with the line
W = §. The series expansion for Y(y) thus truncates after three terms and is exact at R ~ 13.03.
We see from this, and could also find directly from (186), that 8z, = 0for the 4fo state at this point,
Although C, is exact, C is still asymptotic, so the expansion of I in powers of 1/R remains an
asymptotic series at this point. Calculating terms higher than sixth-order would probably improve
the agreement between the 1/R and exact potential curves from a difference of about 1.5 x 103
hartrees in figure 5 down to about 1.0 x 103, With 6, = 0 at R = 13.03, this error remains when
we make the Taylor series expansion (189) about &z, = 0. Note that 5z, for the 5go state is equal
to that for the 4fo only at R = R,, and in general the errors in the two 1/R curves are not the same
both before and after the O(3n,) corrections. We thus can expect to have an uncertainty of about
10-2 hartree in our estimate of W at R, in this particular case.
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